互联网产品如何做好数据化

前几天突然想到,如果有人问:“网站分析主要是干什么的?投入成本来进行数据收集和数据分析又有何意义?”也许我第一反应的回答是:“网站分析能帮你更好地优化网站和推广网站。”但仔细想想,这些问题确实没有深入地思考过,也许我们日常中更多去探究网站分析的方法和实现,而对于网站分析的根本意义却没有真正地去想过。所以,这里整理了一下个人看到的目前网站分析的一些应用及体现出来的价值,算是对上面问题的一个简单回答。

监控网站的运营状态

网站分析最基本的应用就是监控网站的运营状态。收集网站日常产生的各类数据——点击流数据、运营数据、用户数据等,并通过统计这些数据生成各类网站分析的报表,对网站的运营状态进行系统地展现。从点击次数、浏览次数、用户数的变化趋势,到比较新老用户比率、页面流失率和目标的实现率,数据帮助运营者从多角度观察网站的状况是否良好。

如果没有网站分析的日常报表数据,无疑会让网站运营者感到恐慌,因为他们失去了对网站现状的感知,也许网站一天会有几千几万的访问量,也有可能只有个位数的用户访问了网站,这样网站的运营就像是闭门造车,没有了目标和方向。

当然,有些网站的数据不仅能监控自身网站的运营状况,而且互联网或某些领域的发展状态提供参考依据,Google的搜索趋势、百度的搜索风云榜是网络热点的风向标,当然我们现在可能会更多地去关注微博上的实时热点信息;淘宝的数据中心为电子商务的交易趋向提供依据。

提升网站的推广效果

Website-promotion 说到网站推广,也许最先想到的就是SEOSEM,但网站分析不仅能够提升网站在SEO和SEM上的表现,同时其对网站的精准营销也能起到有力的支持。

SEO和SEM

SEO和SEM是网站分析中很重要的一块,因为它们是网站获取流量的重要途径,而流量又是网站的基础,所以我们必须清楚的把握网站在SEO和SEM方面的表现。

分析SEO主要是分析网站在各搜索引擎的相关关键词排名、搜索词的点击转化率(CTR)及网站在搜索引擎的收录情况、外链数据、错误页面等,关于SEO网上的介绍很多,最关键的还是网站自身的内容质量及在SEO上面的优化。

SEM的效果很多是通过计算各关键词或者推广来源的投资收益(ROI)来衡量的,一般投入成本比较容易衡量,而产出收益的衡量就会相对困难,需要细分各来源和关键词,电子商务还有直接的利润可以衡量,如果只是信息发布引导线下交易那么分析会困难得多,网上也有很多这方面的文章可以参考。

精准营销

SEO和SEM提高了网站的曝光率,让用户能够更容易地找到我们的网站,但有时我们也需要将我们的网站定向地推给某些用户,也就是网站推广中最常见的线上推广。

这里主要包括用户细分、来源细分和目标市场的细分,通过用户行为分析进行的用户细分让我们能够了解网站主要吸引的是哪类用户,基于来源的搜索关键词和来源网站可以了解用户主要关心网站的哪些信息以及他们会通过哪些相关的途径找到我们,这为我们的线上推广指明了方向。如果网站要发布一个产品或者做一个活动,也许这时候你就清楚的知道需要给那些用户发直邮,在哪些网站上投放广告,推广的内容应该如何组织能够吸引到更多的用户……

我之前的很多关于用户分析的文章介绍了如何更好地去发现网站的忠诚客户、有价值客户,以及用定量的方法去评价网站的用户,其实这些也为网站的精准营销提供了很好的参考依据。

线下推广效果

除了线上推广外,很多网站也会定期进行线下的推广。线下的活动和推广往往会直接展示网站的URL地址,在数据的表现上以直达流量为主,所以评估线下推广效果的关键在于区分哪些流量来源于线下推广?其实网站分析的数据获取途径十分广泛,我们可以通过一些特殊的手段来做到这一点。

比如你会发现Avinash Kaushik的书里面引用的很多网址是类似短网址(Short Url)的形式,通过跳转转到相应的页面,线下推广也可以借用这种方式,在线下公布一个特殊的专用于某次推广的网址(如http://webdataanalysis.net/offline)重定向到目标页面(如http://webdataanalysis.net/),这样在网站分析中只要选取那些来源是公布出去的特殊的URL(如http://webdataanalysis.net/offline)的浏览就可以统计线下推广的效果了,当然也可以使用URL参数的方式在目标URL后面加上类似?from=offline&campaign=……的参数,通过统计这些参数页面被浏览的次数并细分各线下推广途径的效果。  但这里有个问题就是,网址往往是网站品牌的一大要素,尤其是那些直观易记的网址,所以线下推广偏向于使用原始的网站地址,以便于有更好的辨识度,让用户记住这个网站,这就给网站分析的流量区分带来了一定的难度,也许只有通过访问流量的趋势分析来衡量线下推广的效果了。

优化网站的用户体验

User-Experience 通过对外推广,也许已经有很多用户开始进入并访问你的网站了,但用户是否会对你的网站感兴趣,或者是否能够持续访问变成网站的忠实用户,这些就取决于你的网站是否有留住用户的能力了,也就是你的网站是否具有足够好的用户体验,来实现用户的期望和满意度

简单有效的交互流程

无疑,那些简单易用的交互流程能够帮助用户更好地实现他们的操作和目标,而用户也会更喜欢使用那些设计得更加人性化的网站,能让他们随心所欲的穿梭其间。

我们通常会用转化率(Conversion Rate)任务完成率(Task Completion Rate)来衡量网站交互的效果,而对于某些基于任务或者应用导向的网站,这方面的分析尤其重要。通过分析找出一些交互中的不足和遗漏环节或者化繁为简,能够有效提高转化率及用户完成任务的几率,从而有效提高网站的收益。

帮助用户找到感兴趣的内容

我的博客中近期的几篇文章都介绍了如何让用户更好地找到需要的信息,其中包括优化信息架构、优化站内搜索等,这些无疑都能更好地留住用户,让他们继续浏览网站的内容或者继续使用网站的提供的服务。

与其被动地让用户自己去寻找感兴趣的内容,不如主动地将一些用户可能感兴趣的内容推荐给用户,也就是现在很多网站都在做的基于用户行为分析的关联推荐功能,我之前的文章也介绍过网站数据分析在这方面的应用。

倾听用户的心声

也许很多人对网站分析的概念还停留在网站的日常数据报表上,其实网站分析的范围远不止这些,用户问卷调研(Survey)可用性测试(Lab usability testing)、以及我之前介绍过的实景调研(Site visits)都属于网站分析的范畴,Avinash Kaushik把它们归为网站分析中的定性分析(Qualitative Analysis)。也许你会说这些不是UED或者UCD们的工作吗?是的,这些分析的目的都是为了提升用户体验,UED们是用户体验方面的专家,而网站分析师在数据的获取和分析方面更加专业,所以为什么不合作呢?网站分析师提供分析的方案和结果,再由用户体验小组完成优化方案的设计并实施,不要纠结于网站分析工作一定由哪个部门或团队来做,所有的工作都是为了提供更好的用户体验。

正是这些定性分析的方法能够让我们近距离的聆听用户的声音,对满足用户需求,更好地进行网站的内容设计、功能设计,甚至交互导航设计都能起到关键作用。

最后做下简单的总结,如果网站就是为了流量而活的话,那么我们可以将上面网站分析的应用和意义归纳为:监控流量吸引流量保留流量,流量意味着用户,用户意味着网站的生命。

但也许现在我们该考虑下社会化媒体的影响了,不仅仅是SEO和SEM。Twitter的关键词广告平台、移动设备——手机、ipad的应用普及,今后的网站分析可以做得更多,对网站产生的价值也会越来越大。也许上面我提到的只是网站分析的冰山一角,现在有越来越多的人开始从事网站分析并喜欢上了这一职业,网站分析的发展日新月异,一定会有更多的新的应用,让我们拭目以待,

用户属性绝不等于人口属性,与年龄性别相比,更重要的是要记录用户在平台上的状态。比方说,电商里的积分等级、社交app里的点赞关注数、运动健身的app可能关心体重、智能硬件产品关心是否绑定设备等等……

行为事件数据比较好理解,就是用户做了什么。重要的操作节点是必须被记录的,例如:模块导航的点击、浏览内容时的分类、搜索的效率、表单的填写等等……

环境数据则包括渠道、设备、网络环境、使用时间等信息。

2. 用户群研究

在收集了完整的用户属性与行为数据之后,第二步就是要找出最需要关注的用户群,以及他们的核心诉求。你不能只看所有用户的属性和行为分布,为了找到真正对产品增长有贡献的用户,你需要不断地细分人群、进行对比。

留存用户与流失用户有哪些不同的特征,模块A与模块B对留存有何贡献等,哪些环节导致了用户大量流失……都是这一阶段需要被提出的问题。

3. 测试验证,找到最优解经过前一阶段的分析,你和你的团队已经对产品的现状有了更深的认识,也提出了一些改进策略。接下就该验证这些假设。灰度发版、AB Test都是常用的手段。但不管你做了怎样的改进,都别忘记在发版后仔细研究新版本的数据表现。用户在指尖反馈回来的数据结果,将是验证猜测的核心标准。

在行/分答 用研驱动产品升级的范例

上面说了方法,下面让我们拿一个在行/分答举例,看看“别人家的产品”是如何用数据深挖用户需求,并最终实现爆炸式增长的。

乔布斯有句经典语录“用户根本不知道他们想要什么”,福特汽车的创立者也说过,人们说自己想要一匹跑得更快的马,但其实他们需要的是一辆轿车。这个人人都听过的段子,前不久真实地在我们身边上演了:

学员想要个更便宜方便的“在行”,但姬十三和他的团队最终选择了“分答”。而促使他们做出这个决定的关键动因,正是他们对“在行”中各类用户的深刻理解。

早在去年9月,在行就接入了诸葛io数据分析平台,开始采集和分析他们的用户行为数据。

在采集数据时,在行团队首先通过诸葛io提供的Identify维度,将「学员」与「行家」进行区分;然后按照查看行家、想见行家、发起约见、成功约见等事件定义用户阶段阶段,对「学员」进行参与度分层;接着,他们在诸葛io数据顾问的支持下,叠加了约见次数、约见行家类别、客单价、所在地等数据维度,更细致地拆分这些学员,并最终建立了一系列不同活跃度、不同内容偏好、不同消费能力的用户群组。

接下来,在行团队开始对这十多个用户群组进行特性分析。

最初,大家认为地域和时间是限制在行扩张的核心因素。然而在进行了简单的数据比对之后,在行团队发现:给学员匹配距离更近的行家、让学员和行家用电话交流之类的方式,顶多算是一匹跑得更快的马。而用户内心所期待那辆“福特车”,应该是一种更轻、更高频、价格更灵活、时效性更强的知识分享产品。

基于这个观察,在行开始了一次大胆的Growth Hacking尝试:在“在行”中开发”语音问答”的新模块。由学员发起提问、圈出期望的答题行家并预设答题价格,再由行家通过语音在线竞答。于是,以“有问题吱一声”为名的「吱」模块迅速上线,成为“轻在行”模式的第一个测试方案。

模块「吱」,是分答成功背后的神秘功臣。说它神秘,是因为许多在行的老用户并不知道「吱」的存在。当时,在行团队为了更好地研究语音问答模式的受众特性,并未将这个模块开放给所有在行的用户。而是按照前期划分好的用户群组,分批次地开始做灰度测试,以此模拟各群组用户在使用语音问答时的心智模型。

经过多轮测试和对比,一个出乎意料的结果显现出来:高频使用语音问答的用户群,与喜欢线下约见行家的用户群几乎是毫无重叠的两拨人。甚至于,从没有成功约见过行家的用户,使用模块「吱」的参与度,比有约见经历的用户高一倍有余。

数据对比的结果给在行团队带来了全新的用户洞察:“语音问答”与“在行约见”的受众有本质不同的知识获取需求,二者对知识的深度和趣味性有完全不同的预期。从产品层面来看,要满足不同用户的不同需求,最好的方案是:将“语音问答”模块做成与「在行」互补的新产品。至此,「分答」始现其型。

小结

如果今天我们来复盘这场“马车还是福特”的博弈,不难发现姬十三和他的团队能够胜出,是因为对用户深层需求的不断探索和准确理解。

避免“拍脑门”式的臆测,让行为数据替用户代言,用数据结果衡量每一个假设……这种客观严谨的用户研究方法,是值得每一个产品团队借鉴的。

总的来说,通过行为数据分析实现客观高效的用户研究,你需要:

  1. 基于自身的业务特点,依托账号体系,采集用户属性与行为数据;
  2. 选择一款合适的分析工具(例如诸葛io),既能还原用户的操作流,身临其境作单体洞察;又能快速实现多维度的用户分群对比,以探索用户特性;
  3. 反复切分用户群组,对比数据表现,大胆假设、快速验证;
  4. 比对产品迭代前后的数据指标,评估前期假设、衡量改版质量。

文章由PM28网编辑,作者:海阁,如若转载,请注明出处:http://www.pm28.com/423.html欢迎投稿

联系我们

在线咨询:点击这里给我发消息

邮件:403567334@qq.com

工作时间:周一至周五,9:30-18:30,节假日休息