产品经理怎么做以数据作为增长依据的底层逻辑!

所谓的“数据驱动业务增长”是以企业产品业务线海量数据的收集、存储、可视化、分析、挖掘作为核心支撑的,全体业务线人员参与的,以精准、细分和精细化为特点的运营战略。

即针对运营、产品、市场、客服等部门的运营数据,通过可视化、可量化、可细化、可预测等一系列数据分析方法论以及理论、经验等来进行业务分析,挖掘业务增长点。

具体的主要以“产品以及官网流量数据分析、目标用户行为数据分析、目标用户群转化分析、活动营销策划推广数据分析、用户画像数据分析、产品功能优化迭代、竞争调研以及监控数据分析、渠道效果分析等”。

而面对海量的数据,还是有很多人不知道从如何着手、如何开展,如何得出结论。

下面梳理探讨一下“数据驱动业务增长”的底层逻辑思维,希望在数据驱动业务增长的实际应用中能给大家扩展一下思路。

01

那么,首先来看一下何为“底层逻辑”呢?

底层逻辑,广义上关于某种事物的认知,狭义上对于具体到某个产品的规则。在《底层逻辑》这本书里如是写道:所谓底层逻辑,就是从事物的底层、本质出发,寻找解决问题路径的思维方法。底层逻辑越坚固,解决问题的能力也就越强。

其实当我们在思考问题时,首先的核心切入点,从这个点开始思考所作出之后的决定,当围绕着底层逻辑思考时,做出的决定才是和初心一致,最贴合内心的,也是真实的人性反馈。

而在商业系统里的定位就是从底层逻辑为思考核心。比如腾讯,在早期,它的底层逻辑就是创造一个可以让人与人交流的软件。从这个逻辑上确定的定位就是“连接”。连接人与人,连接人与物,连接物与物,连接世界就是从这个底层逻辑上生发出来的商业路径。

也可以说,底层逻辑是事物基本的驱动力(在这里不做详情探讨,只要了解底层逻辑的概念)。

02

接下来,我们来看一下以数据驱动业务增长的3个底层逻辑。

1. 数据分析基本步骤

所有数据分析都应该以业务场景为起始思考点,以业务决策作为终点。都绕不开是多少、是什么、为什么、会怎样、又如何。

基于此,数据分析的五个基本步骤:

  1. 第一步,首先挖掘业务含义,理解数据分析的背景、前提以及想要关联的业务场景结果是什么。
  2. 第二步,需要收集整理数据,梳理用户行为路径。
  3. 第三步,从业务场景中拆分出需要的数据,将数据可视化,落地分析原因。
  4. 第四步,从数据结果中,判断提炼出业务洞察,预测可能会发生的结果。
  5. 第五步,根据数据结果洞察分析,最终产出业务决策。

例如,互联网HR考勤类网站,渠道运营在百度和 360搜索上都有持续的广告投放,为官网引流。

最近领导建议尝试投放神马搜索渠道获取流量,另外也需要评估是否加入知乎、今日头条进行深度广告投放。

在这种多渠道的投放场景下,如何进行深度决策?我们按照上面数据分析流程的五个基本步骤来拆解一下这个问题。

第一步:挖掘业务含义

首先要了解渠道人员想优化什么,并以此为北极星指标去衡量。

对于渠道效果评估,重要的是业务转化:对hr考勤类网站来说,是否“创建企业”要远重要于 “访问用户数量” 。所以无论是神马移动搜索还是知乎、今日头条渠道,重点在于如何通过数据手段衡量转化效果;也可以进一步根据转化效果,优化不同渠道的运营策略。

第二步,梳理用户行为路径

以 “创建企业” 为核心转化点,分配一定的预算进行流量测试,梳理用户下载激活到创建企业的行为路径,观察对比注册数量及最终转化的效果。通过埋点,持续关注创建企业数量,进一步判断渠道质量。

第三步,从业务场景中拆分出需要的数据

将数据通过漏斗图可视化,需要比对渠道流量,以及各个渠道追踪流量、落地页停留时间、落地页跳出率、网站访问深度以及订单等类型数据,进行深入的分析和落地。

第四步,提炼业务洞察,预测可能会发生的结果

根据数据结果,比对神马搜索、知乎、今日头条投放后的效果,根据流量和转化两个核心KPI,观察结果并推测业务含义。如果神马移动搜索效果不好,可以思考是否产品适合移动端的客户群体;或者仔细观察落地页表现是否有可以优化的内容等,需找出业务洞察。

第五步,根据数据结果洞察分析,最终产出业务决策

根据数据洞察,指引渠道的决策制定。比如停止神马渠道的投放,继续跟进知乎、今日头条进行评估;或优化移动端落地页,更改用户运营策略等等。

2. 内外因素分解法

在数据分析的过程中,会有很多因素影响到业务指标,那么如何找到这些因素呢?在此向大家推荐内外因素分解法。

内外因素分解法是把问题拆成四部分,包括内部因素、外部因素,然后再一步步解决每一个问题。

内部因素:可有为获客(渠道质量低、活动获取非目标用户)、满足需求(新功能改动引发某类用户不满)、提活手段(签到等提活手段没达成目标、产品自然使用周期低导致上次获得的大量用户短期内不需要再使用等),新手上手难度大、收费不合理、产品服务出现重大问题、活动质量低、缺少留存手段、用户参与度低等等。

外部因素:可采用PEST分析(宏观经济环境分析),政治(政策影响)、经济(短期内主要是竞争环境,如对竞争对手的活动)、社会(舆论压力、用户生活方式变化、消费心理变化、价值观变化等偏好变化)、技术(创新解决方案的出现、分销渠道变化等)、以及市场、竞争对手、节假日等。

这里也需要注意区分哪些因素为可控和不可控的。

例如,内容付费网站,其盈利模式一般购买广告位等。运营人员发现了, 作者“发布文章” 的篇数,在5-6月份有缓慢下降的趋势。对于这类某一数据指标下降的问题,可以怎么分析呢?

根据内外因素分解法可分为:

  • 内部可控因素:产品近期上线更新、市场投放渠道变化、产品粘性、新老用户留存问题、核心目标的转化。
  • 外部可控因素:市场竞争对手近期行为、用户使用习惯的变化等。
  • 内部不可控因素:产品策略(移动端/PC端)、公司整体战略、公司客户群定位(比如只做大数据方面的技术类文章)。
  • 外部不可控因素:互联网行业趋势、整体经济形势、季节性变化。

有了内外因素分解法,我们就可以较为全面地分析数据指标,避免可能遗失的影响因素并且对症下药。

3. 拆解思维

拆解思维是从一个具体问题拆分到整体影响,从单一的解决方案找到一个规模化解决方案的方式。

例如,某在线教育平台提供免费课程视频,同时售卖付费会员,为付费会员提供更多高阶课程内容。如果我想将一套phython技术的付费课程,推送给一群持续在看 C++ 免费课程的用户,那么数据分析应该如何支持呢?

我们按拆解思维的四个步骤,分解如下:

  • 具体问题:预测是否有可能帮助某一群组客户购买课程。
  • 整体影响:首先根据这类人群的免费课程的使用情况进行数据分析、数据挖掘的预测,之后进行延伸,比如对整体的影响,除了计算机类,对其他类型的课程都进行关注。
  • 单一回答:针对该群用户进行分析,监控最终转化的影响。
  • 规模化方案:之后推出规模化的解决方案,对符合某种行为轨迹和特征的行为进行建模,产品化课程推荐模型。

03

总之,数据驱动业务增长是一个厚积薄发的过程,需要日常业务工作中要做好数据收集、数据清洗、数据监控、数据可视化分析、数据产出在内的每一个环节。

而在产品业务线不同的生命周期阶段,其增长内核各不相同:

  • 引入期:产品驱动,通过用户行为数据,优化产品迭代。
  • 成长期与成熟期阶段:渠道驱动,通过渠道数据,筛选优质渠道。
  • 衰退期:品牌驱动,通过内容数据,设计出有效的营销策略。

但不同生命周期阶段的都有数据产生,通过数据来挖掘业务的潜在价值,且通过分析来发现业务的第二增长曲线。

所以,以数据为驱动更是成为产品业务线增长的运营战略,只要找到合适的方法,就一定能破解出数据背后的真正含义,为增长赋能。

一、用户行为主要包括哪些数据

  • 用户来源渠道、地区;
  • 用户的PV、UV、IP、老访问数、新访问数;
  • 用户停留时间、使用时间及频次、跳出率、回访次数、回访相隔天数;
  • 用户使用频次分布、时间段分布,平均停留时长;
  • 用户所使用搜索引擎、关键词、关联关键词和站内关键字;
  • 用户在页面上的点击量;
  • 用户进入下一个路径的转化率;
  • 用户的客单价、订单数、会员购买率;
  • 用户发视频数,创建企业数等等。

……

用户使用产品的有很多场景,所以用户行为数据有很多,在这里不一一介绍了,当然欢迎大家留言补充。

总的来说,这些数据反映的都是产品业务线的总体情况,数据的价值除了反映现状,还有更重要的是应用。

如何应用这些数据,通过分析,来驱动业务增长呢?

二、如何分析用户行为数据,来驱动业务增长

1. 了解产品业务线的整体用户情况

如,PV、日均访问量、用户总数、订单数、会员数、总销售额、用户来源分布及占比、有购买行为的用户数量、用户的客单价、复购率分别是多少?等等整体用户概况数据。

2. 利用用户行为转化漏斗梳理用户的全行为路径

如,Toc的购买路径一般为打开APP→点击商品页面→浏览商品详细页→ 添加购物车→ 完成支付。

Tob的路径一般用户会经历认知→熟悉→试用→使用→忠诚→购买的过程。可以清晰的看到用户在路径中的每一步转化。

比如,从查看商品详情到最终支付成功每一步的转化率,从而对既定路径不断调优。

若用户点击加购物车的转化率较低得到话 ,需要提高用户的购买意愿,可通过活动促销、精准营销等方式。

3. 根据不同的行为进行用户分群,了解人群特征

如,完成支付与未完成支付的人群有什么特征?添加购物车与未添加购物车的人群有什么特征?注册用户和非注册用户,分析两者之间的浏览特征等等。

发现问题,优化运营策略,从而进行用户精细化运营;实现用户精准营销,驱动业务增长。

比如,通过用户分群了解到近期用户有高频次搜索的同一类关键词的特征。可同步到前端页面,设置成可点击元素,提高搜索效率。还可以知道有明确目标客户,受促销和广告影响少。

4. 根据不同时间段维度,了解用户行为习惯

如,用户在不同时段的访问量情况分布、活跃情况、新增情况、使用间隔分布等。

看出不同时间段的用户行为趋势,通过分析,看出趋势高低的原因;进而优化运营策略,加大或者减少投放费用等,驱动业务增长。

比如,通过分析不同时段用户的搜索行为习惯及峰值和低谷,为不同时段的用户补充不同的商品/课程/服务。加大活动力度、优化搜索结果页结构、优化搜索推荐等提供数据支持。

还可以根据用户的活跃时间段精准推送商家的折扣优惠或促销活动,提高购买率。

5. 基于RFM模型进行用户分析

RFM模型通过一个客户的近期购买行为、购买的总体频率以及花了多少钱3项指标来描述该客户的价值状况;基于一个理想的客户特征来衡量现实中客户价值的高低。

通过此类分析,定位最有可能成为品牌忠诚客户的群体,让我们把主要精力放在最有价值的用户身上。进而实现精准的营销以及用户维护,驱动业务增长。

比如,通过RFM模型进行用户分类,可以显示出该各类客户的占比。显而易见一般挽留客户与一般发展客户占据多数,说明该产品业务线用户结构不是很合理,需要尽快采取措施进行优化。

还可以通过对R 和 F 的数据监测,推测客户异常状况,挽回流失客户。

我们也需要思考一般挽留客户与一般发展客户占据多数,这个是比较正常的情况。

根据正态分布,中间的数字确实是挺高的,所以这一点可能需要琢磨一下。

根据二八原则,一个公司百分之八十的利润,是百分之二十的客户带来的,所以资源一般是向这百分之二十的客户去倾斜,而不是剩下的百分之八十。挽回流失的客户也是需要成本的,可能还是得考虑投入产出比的问题。

总之,透过用户行为数据深挖用户表面行为的背后真实、本质的需求。全面视角的分析用户行为数据,实现用户精准营销和精细化运营,从而驱动业务实现增长。

还有一个值得需要考虑的是成本问题,朋友如是说:

“我所了解的用户行为分析,需要较高的门槛,既要有一套完整的数据监控体系,而且要确保数据是真实的,同时拿到一大堆用户的行为数据来分析,也是很头疼的一件事。从产入产出比来看,如果用户行为分析只是用在用户画像和智能推荐的话,成本是一个必须要考虑的问题。”

而对于用户进行分析不局限于“RFM模型”,可以根据分析的目的,灵活选择常用的分析模型,对用户进行分析和分类区分。

引用朋友的一句话:

“我们意识形态里面都会觉得大数据里面一定能挖掘出一些信息,或者价值。实际情况有这么一种:在促销活动里面,我们通常会认为促销的方案落地之后,营业的数据一定曲线向上,实际上更多的时候营业数据的波动并不会特别明显,甚至用了某些模型,会得出“促销方案的效果几乎等于0”的结论。所以,数据分析的背后是不是一定能挖掘出某些价值。如果没有,那么问题出在哪里,对“数据分析”这个工具的使用,还有哪些注意方式。”

文章由PM28网编辑,作者:海阁,如若转载,请注明出处:http://www.pm28.com/3854.html欢迎投稿

联系我们

在线咨询:点击这里给我发消息

邮件:403567334@qq.com

工作时间:周一至周五,9:30-18:30,节假日休息