在做用户运营中如何进行用户细分(干货详解)

一、用户细分的直观感受

做用户细分本身很简单,比如我们上一节讲的用户分层,其实就是用一个分类维度,按高中低进行的简单用户细分,比如:

  • 按用户过往1年内消费细分:高级(1w+)中级(5K-1w)低级(1-5K)
  • 按用户活跃行为细分:活跃(过往30天内15天以上登录)不活跃(登录≤15天)
  • 甚至更简单的,按基础属性细分:男性/女性,老年/中年/青年

做用户细分简单,但做有效的用户细分就难了。所谓有效,就是能对运营、产品、营销、销售工作有帮助,比如我们区分了高中低级客户,我们知道了高级客户很有钱,可到底该怎么服务他们?什么时间、什么场景、做什么活动?依然不清楚。因此,单靠一个维度进行分层是不够的,我们需要更多分类维度,做更细致划分。

看一个小例子 :

来看看这个例子可以怎么分析:

(1)先看看消费习惯

从对公司贡献的收入上看,ABC三类是同一档次的。可实际上ABC三类代表了三种不同的消费习惯:

A:集中采购(很有可能是在双十一买最便宜的)

B:换季采购(很有可能每季度跟风新品)

C:频繁采购(日常活跃高,运营最喜欢)

(2)用户消费习惯不同,会直接影响运营手段

A:集中采购:集中一次大活动引爆!

B:换季采购:每季新品促销

C:频繁采购:打卡+积分+周活动

具体用哪一种,可以参考整个用户结构中ABC三类的比例,选一个主战术,效果如下:

注意,现有的,不代表就是合理的。也有可能领导表示:虽然我们当前是A群体占60%,但我们希望未来C群体能占60%,要改变现状。这样在选择战术的时候,就得更多考虑C群体特点,找更符合C类用户需求的活动、产品、优惠。总之,更细致的了解用户特征,就能助力运营工作。

这就是用户细分的直观作用:通过细分,为运营提供更精细的数据指导。 当然,为了教学方便,这个例子的数据很极端。在实际操作中,只要能找到区分度够高的分类维度,都会有类似的效果。核心问题是:该怎么找。这是做用户细分的关键。

二、用户细分的操作步骤

第一步:定义什么是“有效”

这一步非常非常重要。用户细分可以有无穷无尽的分法,如果不事先定义清楚什么是“有效”细分,就会陷入茫茫多的细节大海捞针。

很多新手最容易忽略这一点,提起用户细分,就急匆匆把一堆用户特征变量塞进聚类模型,聚完了以后不知所措,到处问:“有没有用户分类的科学、权威、谁挑战就拖出去重打50大板的标准?”最后还被运营批判为:做的啥玩意!就是因为脱离了业务实际,只埋头加减乘除的缘故。

有效的分类标准,当然是根据运营的需要来的。我们可以从运营的目标、KPI、任务里拆解出对应的数据指标,比如运营的任务是:提升收入。我们按以下步骤,把业务问题转化为分析问题。

有了分类标准,就能检查细分是否有效,比如目标是:找到累积消费高的用户群体。那最后就看,我们找到的细分群体,消费差异是不是足够高,是不是真的锁定了高消费群体。

具体效果如下图所示:

第二步:从运营手段上找分类维度

找到了分类标准,我们可以看从什么维度切分用户,能让用户群体间差异更明显。这里又是一个大坑,因为看起来似乎可选维度非常非常多。很多同学陷入迷茫,到底我该怎么选。或者好不容易选出来,运营问:为什么这么分?他答:这么分差异大!然后被批判为:不懂业务,瞎胡乱做,好郁闷……

实际上,分类维度筛选有一定标准,完全不用到处乱跑:

(1)选数据来源可靠的维度

比如性别,年龄这些基础维度,很多公司没有严格采集流程,数据空缺多,真实性难保证,就不要用这些。尽量用消费、活跃、注册来源这些可靠的数据。

(2)选运营可影响的维度

比如设备型号,可能开发很关心,但运营知道了也干不了啥事,这时候就不要选;有些指标运营特别关注,比如运营想发优惠券,那用户对优惠券领取率、使用率就是特别好的指标。

(3)选自身分层差异明显的指标

有些指标自身差异都不大,数据分布很集中,这时候就不优先选用,优先选择那些自身分布差异大一些的指标。

以上,基于这三个标准,可以避免大海捞针瞎做实验,也能避免做出来被运营批判为:“这有啥用”。有同学会觉得,这个过程和做风控模型时找特征很像。确实很像,但有区别。风控模型对应的业务动作只有“通过/拒绝”两类,所以完全不需要考虑那么多。而做给运营的用户细分,运营落地时要考虑:活动主题、时间、产品、卖点、传播渠道……一大堆玩意,所以必须考虑哪些维度对运营有用。

第三步:尝试细分,观察结果

有了分类维度,我们可以尝试对分类标准做切分。

这里又有三个很纠结的问题:

  1. 到底每个分类维度且几段;
  2. 到底要加多少分类维度;
  3. 到底分多少类合适。

先从结果来说:原则上,最终分类数量不宜太多,每个群体要在运营看来有可操作意义。运营做活动要设计海报、备货、开发系统、准备投放资源。因此如果群体规模太小,是不适合单独做活动的。所以做用户细分时,习惯上限制群体最大为8类(每个群体都大于10%的份额)至于具体规模大小,可以根据项目目标,运营情况做设计。

在这个大原则下,意味着分类维度和每个维度的切分都不可能太多,尽量选关键维度,关键切分点,如果维度太多可以考虑用降维算法来做压缩。在每个维度切分时,需注意以下问题:如果单维度分段,发现某些分段有特殊性,就不能随意合并(如下图所示)

总之分类的过程需要反复尝试很多步,直到最后输出理想结果为止。

三、特别说明:用户细分和推荐算法的区别

很多网上的文章会把用户细分和千人千面的个性化推荐混淆。虽然口头上,很多人会说:我们做用户细分是为了了解用户需求,实现千人千面的效果,可在在业务上这是两个含义。

针对一个细分群体,运营可以做很多引领性、创新性动作。比如我们想壮大高端用户群体,那完全可以推出全新的产品系列、全新的奖励政策、全新的服务来吸收高端用户。只要我了解了他们的喜好、行为习惯,就能做的很精准。但是,全新设计的前提是该用户有一定体量,值得我这么干。

所以,做细分时就不能考虑非常多维度,切得特别细,搞得很促销复杂无比。我要昭告天下,让大家都知道我们在干这件事,才能形成从众效应,获得更大效果。

推荐系统则不受此限制,推荐系统完全封闭了信息渠道,每个人看的都不一样,只要能提高一点用户响应率就行。所以推荐的都是现有的,存量的产品,尽量实现用户和产品的匹配。推荐系统可不能产生新创意和新效果,也设计不出新产品。所以完全不用纠结:我拆分的到底细不细,只要能达成业务目标就行。

四、小结:用户细分的真正难点

看完整个过程,大家会发现用户细分,是个原理简单,操作复杂的东西。操作复杂,完全不是建模过程,而是对目标的把握,对维度筛选,对切分大小的把握,都得考虑业务上需求。虽然数据、统计学给我们提供了很多工具(分类工具、降维工具)可真正用到实处还是得考虑具体业务场景。我们从来都不缺少会背课本的学生,我们缺少的是会考虑实际场景的分析人员。

很多新人上路不明白这点,你问他:

  • 用户细分服务什么目标?
  • 运营口中的“核心用户”指的是消费高?活跃多?有转介绍行为?
  • 知道了“男/女”运营又能做什么事情?
  • 运营有几种手段能达成目标?
  • 如果只有200元消费差距,运营有多少空间做事?

他们的回答当然是:通通不知道。

然后还倔强的反问:你管这干啥!!!我就想知道,就没有一个电商行业做Kmean聚类权威标准的分类数量吗!!!到底是5还是8!!!╮(╯▽╰)╭

特别提醒:活在学校图书馆的书本里,是无法解决企业实际问题的。

第一,如果产品的用户是多边的,先根据不同角色分类。

多边型的产品,对应单点(如小工具)和单边(某些同好社交应用)的产品,要有至少两种明显差异的用户群体,通常这种产品都具有平台属性。

举例,对于淘宝来说,常见的分法是买家、卖家、第三方服务商、平台方;对于滴滴出行,就可能会分成司机、乘客、平台运营方;对于知乎,可以分为提问者、回答者、吃瓜群众、平台方……这种就是按不同的角色来分类,一般我们会把不同角色作为第一维度来对目标用户进行分类,不同用户群体的需求场景差异显然巨大。

第二,新人、中间用户和专家。

这是按照用户对「产品所在领域的熟悉程度」来分类,也是一种非常常用的用户分类方法。对于单边的用户角色,如果找不到更好的分法,我建议用这个方法保底,毕竟新人和专家的需求场景差异巨大,前者希望「简单易用易上手」,后者期待「稳定可靠性能高」。

比如QQ音乐,对于听歌的用户来说,如果是新人,他可能需要最热的榜单、通过场景自动选歌,对于专家用户,他可能会去搜某一张专辑,或者搜某位歌手;又如开车,新人需要一辆好开的自动挡,专家可能需要能上赛道的手动小钢炮、能进山的硬派越野。

与此近似的角度,是新用户与老用户。

第三,根据人口统计信息。

年龄、性别、职业、所在地、消费水平……这个方法要慎用,要避免人口统计信息和产品关系不大的情况(比如按照不同职业来区分打车用户,就没什么逻辑),这样划分成的几类用户,需求场景差异往往不是很明显。

说几个比较适合的例子。银行各种级别的信用卡,是按照资产、收入、消费水平来分的;乐高的玩具,是按照年龄——不同年龄段儿童的常规智力水平区分的;一些服装品牌款式的策略,按照地域——一线大城市与三四线城市划分;奶粉,不同的年龄段;K12教育里的学生,不同年龄段;厕所,性别(这个例子比较扯淡,哈哈)……等等。

第四,根据产品的业务场景。

这个很难总结为通用的规则,通过几个例子给大家一点启发。

  • 比如做企业服务,可以按照用户(公司)的阶段分为种子轮、天使轮、A、B、C……PreIPO、已上市等;
  • 做培训的,可以按照互联网、IT、快消、生产制造等行业划分,产品、运营、技术、管理等不同岗位划分;
  • 做航旅的,可以按照用户累积里程分为普通、银卡、金卡、铂金;
  • 做媒体的,可以按照读者的三观进行区分,信中医的和反中医的,民族主义的和世界大同的;
  • 做社区的,经常分为原创内容的PGC写手、加工内容的(点赞、转发等)积极分子、纯消费内容的浏览型用户;
  • 做出游的,可以分为单人、情侣、亲子、团建等等;

还有比较通用的,分为需要引导的菜鸟,需要维系的忠粉,需要召回的旧爱,需要赶走的讨厌鬼

文章由PM28网编辑,作者:海阁,如若转载,请注明出处:http://www.pm28.com/2854.html欢迎投稿

联系我们

在线咨询:点击这里给我发消息

邮件:403567334@qq.com

工作时间:周一至周五,9:30-18:30,节假日休息